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We investigate classical thermal activation �TA� and macroscopic quantum tunneling �MQT� for a
YBa2Cu3O7−� �YBCO� Josephson junction coupled to an LC circuit theoretically. Due to the coupling between
the junction and the LC circuit, the macroscopic phase dynamics can be described as the escape process of a
fictitious particle with an anisotropic mass moving in a two-dimensional potential. We analytically calculate the
escape rate including both the TA and MQT regime by taking into account the peculiar dynamical nature of the
system. In addtion to large suppression of the MQT rate at zero temperature, we study details of the tempera-
ture dependence of the escape rate across a crossover region. These results are in an excellent agreement with
recent experimental data for the MQT and TA rate in a YBCO biepitaxial Josephson junction. Therefore the
coupling to the LC circuit is essential in understanding the macroscopic quantum dynamics and the qubit
operation based on the YBCO biepitaxial Josephson junctions.
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I. INTRODUCTION

Macroscopic quantum tunneling �MQT� has become a fo-
cus of interest in physics and chemistry because it can pro-
vide a signature of quantum behavior in a macroscopic
system.1–3 Among several works on MQT, Josephson junc-
tions have been intensively studied.2,4 Heretofore experimen-
tal tests of MQT were focused on low-Tc superconductor
Josephson junctions.

Renewed interest in MQT occurred after the recent ex-
perimental observations of MQT �Refs. 5–11� and energy-
level quantization �ELQ� �Refs. 7 and 12–14� in high-Tc su-
perconductor Josephson junctions, e.g., YBa2Cu3O7−�

�YBCO� grain-boundary biepitaxial junctions �see Fig. 1�a��
�Ref. 15� and Bi2Sr2CaCu2O8+� intrinsic junctions.16 High-Tc
Josephson junctions, characterized by a high Josephson
plasma frequency �p �up to several THz�, exhibit a crossover
from the thermal activation �TA� to MQT at relatively high
temperatures in comparison with low-Tc systems.

These intriguing findings have definitively opened up
the way to quantum systems based on the d-wave symmetry
of high-Tc superconductors. The d-wave order parameter can
be used to create naturally degenerate two-level systems
which can offer significant advantages for quantum
computation.17–22 However, one of the main arguments
against high-Tc qubits based on systems with d-wave order-
parameter symmetry was the presence of low energy excita-
tions, i.e., nodal quasiparticles and zero-energy Andreev
bound states �ZESs�, destroying quantum coherence. Recent
theoretical works suggest that nodal quasiparticles and ZESs,
respectively, give super-Ohmic and Ohmic dissipation on
MQT.23–29

The YBCO biepitaxial grain-boundary junctions which
were used in MQT and ELQ experiments,5,12 have quite
novel structure and several fascinating advantages for the

coherent property over other types of high-Tc junctions.
First, the relative orientation of the d-wave order parameter
between two YBCO electrodes can be designed
artificially.30,31 Therefore it is possible to make a junction in
which a lobe of the d-wave order parameter of one electrodes
is facing a node in the other electrodes as shown in Fig. 1�a�.
In such configuration, super-Ohmic dissipation resulting
from the nodal quasiparticles can be suppressed.23,26,28 More-
over the junction has an additional tilting of one electrode
��103� YBCO� with respect to �001� YBCO electrodes �see

FIG. 1. �Color online� �a� Schematic of a biepitaxial YBCO
junction and �b� the extended circuit model for �a�, including the
bias current Iext, the stray capacitance CS and kinetic inductance LS.
The Josephson junction with the critical current IC and the capaci-
tance CJ is formed at the boundary between �001� and �103� YBCO
electrodes. � and �S are the phase difference across the Josephson
junction and the stray capacitance CS, respectively.
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Fig. 1�a��. In such tilt junctions, the formation of ZESs caus-
ing Ohmic dissipation can be inhibited as was predicted by
Golubov and Tafuri.32

Recently, it was found from ELQ experiment that the
measured bias-current Iext dependence of the resonant fre-
quency deviates significantly from what one expects from
the Josephson plasma frequency �p in a conventional single
Josephson junction.12 The resonant frequency is a factor of
five less than what one would expect from the estimated
values of the Josephson critical current IC and the junction
capacitance CJ. This fact could be explained by taking into
account the existence of a large kinetic inductance and stray
capacitance coupled to the junction.12

In the biepitaxial junctions, the film of the �103� YBCO
electrode is oriented in such a way that the electric transport
has a large component in the c-axis direction �see Fig. 1�a��.
So the kinetic inductance LS of the �103� electrode can be
significant and is much larger than the Josephson inductance
of the junction LJ.

12 Another important effect which was ob-
served in ELQ experiments is the influence of the stray ca-
pacitance CS of the SrTiO3�STO� substrate with a huge di-
electric constant �see Fig. 1�a��. Hence a large part of the
measured capacitance is not due to the junction interface but
to a distributed stray capacitance CS which in effect shunts
the junction.12

The influence of LS and CS on the macroscopic dynamics
is inevitable in the biepitaxial junctions and can be taken into
account by an extended circuit model �see Fig. 1�b��.12,33,34

In Fig. 1�b�, � is the phase difference across the Josephson
junction and �S= �2� /�0�ISLS+� is the phase difference
across the capacitor CS, where IS is the current through the
inductor LS. As will be mentioned later, the addition of the
LC circuit results in a two-dimensional �2D� potential
U�� ,�S� and an anisotropic mass which make the dynamics
much more complex than for an ordinary single junction. In
Refs. 12, 33, and 34 we have theoretically investigated the
classical resonant activation based on the extended circuit
model, and found that the bias-current Iext dependence of the
resonant frequencies can be quantitatively explained by the
normal modes �upper and lower resonant mode� of the sys-
tem. Those normal modes, under certain conditions, can be
completely different from the bare Josephson plasma fre-
quency �p. Therefore the extended circuit model well de-
scribes the ELQ experiment in the YBCO biepitaxial junc-
tions.

In contrast to ELQ experiment, it was experimentally con-
firmed that the thermal escape process above the crossover
temperature Tco can be quantitatively explained by the
single-junction model without the LC circuit, i.e., one-
dimensional �1D� model.5 Therefore a natural question to ask
is can the extended circuit model explain both the TA and
MQT escape dynamics in the YBCO biepitaxial junction
consistently? In this paper, in order to answer the important
open question, we explore the validity of the extended circuit
model for both the TA and MQT escape processes by extend-
ing the previous classical theory.33,34 Then we will show that
the presence of the LC circuit has negligible influence on the
TA escape rate but the MQT escape rate is suppressed con-
siderably due to the coupling to the LC circuit. This behavior
is nicely consistent with a recent experimental result of the

temperature dependence of the TA and MQT escape rate.5

Therefore, the presence of the LC circuit is fundamental and
essential in understanding the macroscopic phase dynamics
in the YBCO biepitaxial junctions.

This paper is organized as follows. In Sec. II, we show the
Lagrangian describing the YBCO Josephson junction
coupled to the LC circuit. We also discuss the anisotropy of
the mass and the two-dimensional potential profile for this
model. In Sec. III, we derive an effective action from the
Lagrangian and show that the system can be mapped into a
one-dimensional model. The crossover temperature Tco, the
TA, and the MQT escape rate are calculated in Secs. IV–VI,
respectively. We try to compare theoretical results with re-
cent experimental data of the YBCO biepitaxial Josephson
junction in Sec. VII. Finally, we summarize our results and
draw future directions in Sec. VIII.

II. MODEL

In this section we derive the Lagrangian for the Josephson
junction coupled to the LC circuit and discuss the anisotropy
of the mass and two-dimensional potential structure of this
model. The Hamiltonian of the circuit �Fig. 1�b�� can be
written as

H =
QJ

2

2CJ
+

QS
2

2CS
− EJ cos � + ��0

2�
�2 �� − �S�2

2LS

− ��0

2�
��SIext, �1�

where QJ=CJ��0 /2���d� /dt� and QS=CS��0 /2���d�S /dt�
are the charge on the junction and the stray capacitor CS,
respectively, EJ= �� /2e�IC is the Josephson coupling energy,
and �0=h /2e is the flux quantum.

The Lagrangian is then given by

L =
CJ

2
��0

2�

��

�t
�2

+
CS

2
��0

2�

��S

�t
�2

− U��,�S� , �2�

U��,�S� = EJ�− cos � +
�� − �S�2

2	
− 
�S� , �3�

where 
= Iext / IC and 		2�ICLS /�0=LS /LJ0 with LJ0
=�0 /2�IC being the zero-bias Josephson inductance. The
Lagrangian L describes the quantum dynamics of a fictitious
particle with an anisotropic mass moving in a two-
dimensional tilted washboard potential U�� ,�S�. Therefore
the escape paths traverse a two-dimensional landscape, so
the macroscopic dynamics in this model becomes more com-
plicated than that in the simple one-dimensional model.

The two-dimensional potential profile U�� ,�S� is shown
in Fig. 2. The mean slope along the �S direction is propor-
tional to the bias current Iext and the mean curvature perpen-
dicular to the diagonal direction ��=�S� is due to the induc-
tive coupling between the Josephson junction and
capacitance CS characterized by 	. The local minimum point
��m ,�S

m� and the saddle point ��t ,�S
t � is given from Eq. �3�

as

��m,�S
m� = �sin−1 
,	
 + sin−1 
� , �4�
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��t,�S
t � = �� − sin−1 
,� − sin−1 
 + 	
� . �5�

Then the potential barrier height V0
2D is given by

V0
2D 	 U��t,�S

t � − U��m,�S
m�

= EJ�2
 sin−1 
 − �
 + 2
1 − 
2� �6�

and is a decreasing function of 
. Importantly, the potential
barrier height V0

2D does not depend on the LC circuit param-
eters LS and CS and the expression of V0

2D is identical with
the barrier height for usual single Josephson junctions, i.e.,
one-dimensional model.33

On the other hand, the overall potential shape can be con-
trolled drastically by changing LS. In the case of small LS or
equivalently large coupling strength 	−1, the side well be-
comes shallower and the potential is almost confined to the
diagonal direction ��=�S�. On the other hand, when the cou-
pling strength 	−1 is decreased, corresponding to a large LS,
the confinement to the diagonal direction tends to be weak.

This makes the escape from a metastable well much easier.
In Secs. V and VI, we quantitatively investigate the CS and
LS dependence of the thermal and quantum escape rate.

Next we derive an approximate expression of U�� ,�S�
for 
�1. By introducing the new coordinate �x ,y�= ��
−�m ,�S−�S

m� and assuming 
�1, we can rewrite the La-
grangian as

L =
M

2
� �x

�t
�2

+
m

2
� �y

�t
�2

− U�x,y� , �7�

U�x,y� = EJ�−
x3

6
+


1 − 



2
x2 +

�x − y�2

2	
�

= U1D�x� + EJ
�x − y�2

2	
, �8�

where M =CJ��0 /2��2 and m=CS��0 /2��2. In this
equation, U1D�x�=EJ�−x3 /6+
�1−
� /2x2���1 /2�M�p

2�x2

−x3 /x1� is the potential of the Josephson junction without the
LC circuit, where x1=3
1−
2 is the second zero of U1D�x�
and �p=�p0�1−
2�1/4 is the Josephson plasma frequency
with �p0=
2�IC /�0CJ=1 /
LJ0CJ being the zero-bias
plasma frequency.

III. DERIVATION OF EFFECTIVE ACTION: MAPPING
TO A ONE-DIMENSIONAL MODEL

Here we derive an effective action from the Lagrangian
Eq. �7� of the extended circuit model. Note that, in the ELQ
experiment, the quality factor Q of the junction was found to
be sufficiently large �Q�40�,12 so we can safely neglect the
damping effect resulting from external environments other
than the LC circuit.

By using the functional-integral method,3,35 the partition
function Z of the system can be written as

Z =� Dx���� Dy���exp�−
1

�
�

0

�


d�L�x,y�� , �9�

where the functional integral is performed over all the peri-
odic paths with the period �
. In this equation, L�x ,y�
= �M /2�ẋ2+ �m /2�ẏ2+U�x ,y� is the Euclidean Lagrangian
and 
=1 /kBT. The Lagrangian is a quadratic function of y
and the coupling term between x and y is linear, so the func-
tional integral over variable y can be performed explicitly by
use of the Feynman-Vernon influence functional technique.3

Then the partition function is reduced to a single functional
integral over x, i.e., Z=
Dx���exp�−Seff

2D�x� /��, where the
effective action is given by Seff

2D�x�=Seff
1D�x�+Seff

ret�x� with36,37

Seff
1D�x� = �

0

�


d��1

2
Mẋ2 + U1D�x�� , �10�

Seff
ret�x� =

1

4
�

0

�


d��
0

�


d���x��� − x�����2K�� − ��� .

�11�

Thus the dynamics of the phase difference with an aniso-
tropic mass moving in a two-dimensional potential U�x ,y�

FIG. 2. �Color online� The two-dimensional potential profile
U�� ,�S� of a YBCO Josephson junction coupled to a LC circuit for

= Iext / IC=0.92 and 	=LS /LJ0=7. Initially the junction oscillate
around the local minima at ��m ,�S

m�. If 
 is increased, the junction
eventually switches to the finite voltage state by escaping either
thermally or via MQT through the saddle point at ��t ,�S

t �.
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can be mapped into a simple one-dimensional model. Note
that due to the coupling between the junction and the LC
circuit, the effective action Seff

2D�x� contains a kind of dissi-
pation action Seff

ret�x� in a sense that a retardation �or nonlo-
cal� effect exists.

The nonlocal kernel K��� in Eq. �11� is given by

K��� =
1

2
m�LC

3

cosh��LC��


2
− �����

sinh��
�LC

2
� =

M

�

�

n=−�

�

�ne−i�n�,

�12�

where �LC=1 /
LSCS is the LC resonant frequency, �n
=2�n /�
 is the Matsubara frequency, and �n
= �CS /CJ��LC

4 / ��n
2+�LC

2 � is the Fourier coefficient of K���.
The nonlocal kernel K��� is related to the spectral density
J��� in the language of the Caldeira-Leggett theory38 via

K��� =
1

�
�

0

�

d�J���D���� , �13�

where D���� is the Matsubara Green’s function of a free
boson, D����= �1 /�
��n=−�

� exp�i�n���2� / ��n
2+�2��. In the

Caldeira-Leggett theory, the external bath is modeled by a
sum of an infinite number of harmonic oscillators which is
capable of destroying MQT.3,38 On the other hand, in our
case, the bath can be described by a single harmonic oscil-
lator and then J��� is given as a delta function, i.e.,

J��� =
�

2
m�LC

3 ��� − �LC� . �14�

For later convenience, we rewrite the effective action Seff
ret�x�

in terms of the memory kernel k���,3 i.e.,

Seff
ret�x� =

1

2
�

0

�


d��
0

�


d��x���k�� − ���x���� , �15�

k��� = m�LC
2 �

n=−�

�

��� − n�
� − K��� =
M

�

�

n=−�

�

�ne−i�n�,

�16�

where the Fourier coefficient of the memory kernel �n is
related to the Fourier transform of the memory-friction ker-
nel 
�t�,3 i.e., 
̂���=
−�

� dt
�t�ei�t, via

�n = ��n�
̂���n�� =
CS

CJ

�n
2�LC

2

�n
2 + �LC

2 . �17�

In below, by using the derived effective action Seff
2D, we cal-

culate the crossover temperature and the escape rate, and
then discuss the influence of the anisotropic mass and the
two-dimensional nature of the potential profile on the mac-
roscopic phase dynamics in the YBCO junction coupled to
the LC circuit.

IV. CROSSOVER TEMPERATURE

Based on the normal-mode analysis at the barrier top of
the potential U�x ,y�, the crossover temperature between the
MQT and TA escape process is given by39

Tco
2D =

��R

2�kB
, �18�

where �R is the renormalized trial frequency due to the cou-
pling to the LC circuit and is a positive root of the equation,
�R

2 +�R
̂��R�=�p
2. By using Eq. �17�, we get

�R =
1

2

�p
� +
�2 + 4
�LC

2

�p
2 , �19�

���p
1 −
CS

CJ

LJ � LS and CJ � CS

�p
1 −
LJ

LS

LJ � LS and CJ � CS
� �20�

for the adiabatic �LJ�LS and CJ�CS� and the non-
adiabatic �LJ�LS and CJ�CS� limit, where �	1− �1
+CS /CJ��LC

2 /�p
2, and LJ=LJ0 /
1−
2 is the Josephson in-

ductance. In the adiabatic �nonadiabatic� limit, the LC reso-
nant frequency �LC is much larger �smaller� than the Joseph-
son plasma frequency �p. As a result, the LC resonant mode
can �cannot� adiabatically follow the dynamics of the Jo-
sephson junctions. Note that, in the YBCO biepitaxial junc-
tion used in the MQT experiment,5,12 the nonadiabatic case is
approximately realized �see Sec. VII�.

By substituting Eq. �20� into Eq. �18�, we get a simple
expression for Tco as

Tco
2D ��Tco

1D
1 −
CS

CJ

LJ � LS and CJ � CS

Tco
1D
1 −

LJ

LS

LJ � LS and CJ � CS
� , �21�

where Tco
1D=��p /2�kB is the crossover temperature without

coupling to the LC circuit. Therefore, due to the influence of
the LC circuit, Tco

2D becomes smaller than Tco
1D. In the nona-

diabatic �adiabatic� case, Tco
2D reduces with decreasing the

kinetic inductance LS �increasing the stray capacitance CS�.

V. THERMAL ACTIVATION PROCESS

The TA escape rate well above the crossover temperature
Tco

2D is given by39

�TA
2D =

�R

2�
cqm

2D exp�−
V0

2D

kBT
� , �22�

cqm
2D = �

n=1

�
�n

2 + �p
2 + �n
̂��n�

�n
2 − �p

2 + �n
̂��n�
, �23�

where cqm
2D is the quantum-mechanical enhancement

factor resulting form stable fluctuation modes and
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̂��n�= �CS /CJ���n��LC
2 / ��n

2+�LC
2 � is the Fourier transform

of the memory-friction kernel. As was shown in Sec. II, the
potential barrier height is not changed even in the presence
of the LC circuit, i.e., V0

2D=V0
1D. Therefore the coupling to

the LC circuit only modifies the prefactor of �TA. Note that
the exponent in �TA for the Josephson junction coupled to
the LC circuit was discussed by Fistul.40 Here we calculate
the TA escape rate �TA

2D including the prefactor in order to
discuss the influence of the LC circuit explicitly and compare
with experimental results. The quantum correction cqm in the
prefactor can be calculated analytically as

cqm
2D =

sinh���+
+�sinh���−

+�
sinh���+

−�sin���−
−�

�24�

with

��
+ =
p+ � 
p+

2 − 4q2

2
, �25�

��
− =
�p− + 
p−

2 + 4q2

2
, �26�

where

p� = �1 + CS/CJ���LC/�1�2 � ��p/�1�2,

and

q = �p�LC/�1
2.

The effective trial frequency �R in Eq. �22� is given by Eq.
�19�.

In the adiabatic limit �LJ�LS and CJ�CS�, the quantum
enhancement factor cqm

2D Eq. �24� can be simplified to

cqm
2D �

sinh��
�p

2

1 −

CS

CJ
�

sin��
�p

2

1 −

CS

CJ
� . �27�

On the other hand, in the nonadiabatic limit �LJ�LS and
CJ�CS�, we get

cqm
2D �

sinh��
�LC

2

1 −

LJ

LS
�sinh��
�p

2

1 +

LJ

LS
�

sinh��
�LC

2

1 +

LJ

LS
�sin��
�p

2

1 −

LJ

LS
� .

�28�

Note that the nonadiabatic limit is almost realized in
the actual YBCO junction5 �see Sec. VII�. The quantum
enhancement factor cqm

2D almost coincides with the
result without retardation effects,41 i.e., cqm

2D �cqm
1D

=sinh��
�p /2� /sin��
�p /2� for both the adiabatic and
nonadiabatic limit �see also Secs. VI C and VII B�. From
Eqs. �20�, �22�, �27�, and �28�, therefore, we can conclude
that the influence of the coupling to the LC circuit on the
thermal activation process is quite weak, so the system be-
haves as a one-dimensional system well above the crossover

temperature Tco
2D. This result is qualitatively consistent with

the experimental observation in the YBCO biepitaxial
junction.5 In Sec. VII we will numerically compare theoret-
ical results with experimental data in the TA regime.

VI. MACROSCOPIC QUANTUM TUNNELING PROCESS

To obtain the MQT escape rate �MQT
2D for the Josephson

junction coupled to the LC circuit below Tco
2D, the usual pro-

cedure is to apply the so-called Im-F method.2,3 It is based
on the calculation of the free energy F=−�1 /
�ln Z and thus
of the partition function Z of an unstable system. According
to the metastable decay theory,3 the MQT escape rate has the
form �MQT

2D =−�2 /��Im F. In below we derive a weak retar-
dation condition in which Seff

ret in the effective action Seff
2D can

be treated as a small perturbation. Then we calculate �MQT
2D

for zero temperature and finite temperature �0�T�Tco
2D� in a

weak retardation limit.

A. Weak retardation condition

Here we derive a condition for the weak retardation or
nonlocal effect. The bounce trajectory xB��� satisfies the
Euler-Lagrange equation obtained from the variation prin-
ciple �Seff

2D�x�=0. Taking the variation of the effective action
Eqs. �10� and �11�, we then get

M
d2xB���

d�2 −
�U1D

�xB���
− �

0

�


d��k�� − ���xB���� = 0. �29�

Introducing the Fourier expansion

xB��� = �n=−�
� x̃n

�B� exp�i�n��

into Eq. �29� and using Eq. �16�, we obtain the following
equation for the Fourier coefficient x̃n

�B�

M���n
2 + �p

2�x̃n
�B� −

3

2

�p
2

x1
�

m=−�

�

x̃m
�B�x̃n−m

�B� � + M�nx̃n
�B� = 0. �30�

For �n=�p, we get

2M�p
2x̃n

�B� −
3

2

M�p
2

x1
�

m=−�

�

x̃m
�B�x̃n−m

�B� + M�n��n = �p�x̃n
�B� = 0.

�31�

The criterion for weak retardation can be obtained from Eq.
�31� by comparing the retardation term �M�n��n=�p�x̃n

�B��
with the first term �2M�p

2x̃n
�B��. By defining the parameter4

� 	
�n��n = �p�

2�p
2 =

1

2

CS

CJ

��LC

�p
�2

1 + ��LC

�p
�2

��
1

2

CS

CJ
LJ � LS and CJ � CS

1

2

LJ

LS
LJ � LS and CJ � CS

� �32�

the weak retardation limit corresponds to the case of ��1.
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In this case Seff
ret in the effective action can be treated as a

small perturbation. Figure 3 shows the LS and CS dependence
of the retardation parameter �. In the YBCO junction used in
the MQT experiment,5,12 CS /CJ�7.3 and LS /LJ�3.2 as will
be estimated in Sec. VII, so ��0.15. Therefore, the weak
retardation condition is almost satisfied in this case.

B. Zero Temperature

The MQT escape rate at zero temperature is given by
�MQT

2D =lim
→��2 /
�Im ln Z.3 By use of the bounce tech-
niques, the MQT escape rate �MQT

2D in the weak retardation
limit ��1 is perturbatively determined by38

�MQT
2D �T = 0� =

�p

2�

120��B1D + Bret�e−B1D−Bret, �33�

where B1D=Seff
1D�xB� /�=36V0

1D /5��p and Bret=Seff
ret�xB� /�

are the bounce exponents, that are the value of the
actions evaluated along the bounce trajectory xB���
=x1 sech2��p� /2�. The bounce action Seff

ret�xB� can be written
as

Seff
ret�xB� = 8�2m�LC

2 x1
2

�p
4

1

�

�

n=−�

�
�n

4

��n
2 + �LC

2 �sinh2���n

�p
� .

�34�

In the limit of zero temperature, we have

Seff
ret�xB� =

8�mx1
2�LC

2

�p
�

0

�

dz
z4

�z2 + ��LC

�p
�2�sinh2��z�

� �
4

15
m�px1

2 LJ � LS and CJ � CS

4

3
m��LC

�p
�2

�px1
2 LJ � LS and CJ � CS

� .

�35�

Therefore the total bounce exponent is given by

B1D + Bdiss =
8

15�
�M + �M��px1

2, �36�

where

�M

M
= 15�

LJ

LS
�

0

�

dz
z4

�z2 + ��LC

�p
�2�sinh2��z�

� �
1

2

CS

CJ
LJ � LS and CJ � CS

5

2

LJ

LS
LJ � LS and CJ � CS

� �37�

is the retardation correction to the mass M. Thus, due to the
influence of the LC circuit, the bounce exponent is increased
with respect to the one-dimensional case.

By substituting Eq. �36� into Eq. �33�, we finally get the
zero-temperature MQT escape rate for ��1 as

�MQT
2D �T = 0� =

�p

2�

864�

V0
1D

��p
�1 +

�M

M
�

� exp�−
36

5

V0
1D

��p
�1 +

�M

M
�� . �38�

Therefore the coupling to the LC circuit effectively increases
the barrier height, i.e., V0

1D→V0
1D�1+�M /M�. This behavior

is consistent with the result for low-Tc junctions coupled to
an LC circuit which was derived in a different context.37,42,43

In contrast to the TA regime, the coupling to the LC circuit
reduces the MQT escape rate �MQT

2D considerably. Therefore
the anisotropic mass and the two-dimensional nature of the
potential profile have large influence on the MQT escape
process in the low-temperature regime.

C. Finite Temperature

In this section we calculate the MQT escape rate at finite
temperature �0�T�Tco

2D� for the weak retardation limit
���1� and show that the T dependence of the MQT escape
is drastically influenced by the coupling to the LC circuit.
At finite temperature the MQT escape rate is enhanced by
thermal fluctuations. If the temperature is much lower than
TLC=��LC /2�kB, the finite-temperature enhancement to
�MQT

2D �T=0� is negligible in contrast to the system with an
Ohmic dissipative environment �see Appendix A�. As will be
shown later, however, at sufficiently high temperature but
still smaller than Tco

2D, the coupling to the LC circuit gives a
large enhancement to �MQT

2D �T=0�.
The finite-temperature bounce trajectory xB

T��� is given by
a periodic solution in the inverted potential −U1D�x� with
energy −E�0�E�V0

1D�. The corresponding solution is given
by xB

T��� /x1=q2+ �q1−q2�cn2���p� �k�, where q3�q2�q1
are the solutions of the equation q2�1−q�=4E /27V0

1D.44

In this equation cn denotes the Jacobi elliptic function with
the parameter k=
�q1−q2� / �q1−q3� and the coefficient
�=
q1−q3 /2. The period �
 of the finite-temperature
bounce xB

T��� is given by the complete elliptic integral

FIG. 3. �Color online� LS and CS dependence of the parameter �
which characterizes the retardation effect due to the junction-LC
coupling. In the YBCO biepitaxial junction which was used in ac-
tual MQT experiment, ��0.15 �red circle�.
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of the first kind K�k�=
0
1dx��1−x2��1−kx2��−1/2 as �


=4K�k� /�p

q1−q2.45 The energy E is related to the tempera-

ture 
−1 via this equation. In the limit of zero temperature
�E→0�, we recover the zero-temperature bounce solution
xB���=x1 sech2��p� /2�.

By substituting xB
T��� into the effective action, a finite-

temperature bounce action ST
2D�xB� can be evaluated as

ST
2D�xB� = ST

1D�xB� + ST
ret�xB� , �39�

ST
1D�xB� = M�

0

�


d� ẋB
T���2 + E�


=
��pM�q1 − q2�2

15k2 F���p�
,k� + E�
 , �40�

ST
ret�xB� =

1

2
�

0

�


d��
0

�


d��K�� − ����xB
T��� − xB

T�����2

=
1

2
m�LC

2 �
 �
n=−�

�
�n

2

�n
2 + �LC

2 �xB
T�n��2, �41�

where xB
T�n�= �1 /�
�
0

�
d�xB
T���exp�i�n�� is the Fourier

transform of the finite-temperature bounce xB
T��� and the

function F�c ,k� is defined by

F�c,k� =
dn�c�k�


1 − k sn�c�k�2
�d�k� + e�k�E�am�c�k�,k�

+ k sn�c�k�cn�c�k�f�c,k�
g�c,k�� , �42�

with sn�c �k� and dn�c �k� the Jacobi elliptic func-
tions, am�c �k� is the Jacobi amplitude, E�� ,k�
=
0

�d�
1−k2 sin2 � is the elliptic integral of the second kind,
d�k�=−4�2+k�k−3��, e�k�=8�1+k�k−1��, f�c ,k�=k−2
−3k cn2�c �k�+3k sn2�c �k�, and g�c ,k�=2k cn2�c �k�−2�k−2
+k sn2�c �k��2.

The prefactor of the MQT escape rate �MQT
2D �T� is deter-

mined from the fluctuation modes around the bounce solu-
tion xB

T��� and can be calculated from the Gel’fand-Yaglom
formula45,46 as

A�T� =
1

2

9M�p

3�1 − 
2�
2��

�q1 − q3�3/4�q1 − q2��1 − k2�

a�k�E�k� + b�k�K�k�

� sinh��p
�

2
� , �43�

where a�k�=2�k4−k2+1�, b�k�= �1−k2��k2−2�, and E�k� is
the elliptic integral of the first kind.47 For E→0, A�T� is
reduced to well-known zero-temperature result, i.e., A�T
=0�= ��p /2��
864�V0

1D /��p. Thus we analytically obtain
the finite-temperature MQT escaper rate for the weak retar-
dation limit

�MQT
2D �T� = A�T�exp�−

ST
2D�xB�

�
� . �44�

This result is smoothly matched to the zero-temperature ex-
pression �38� when T→0.

The Arrhenius plot of the escape rate �MQT
2D �T� and �TA

2D�T�
are shown in Fig. 4. Note that we have used an interpolate
crossover-formula3 near the crossover temperature Tco

2D be-
cause �MQT

2D �T� and �TA
2D�T� diverges as T→Tco

2D due to the
breakdown of the Gaussian approximation �see Appendix B�.
In the numerical calculation, we have used IC=1.4 �A and
CJ=0.22 pF. These parameters agree with those directly
measured or estimated from experiment,5,12 allowing a com-
parison between numerical and experimental data �see Sec.
VII�. The TA escape rate �TA

2D�T� above Tco
2D is almost same as

in the case without the LC circuit as clearly seen from Fig. 4.
On the other hand, �MQT

2D �T� is considerably reduced due to
the coupling to the LC circuit. As was explained in Sec. II,
the MQT escape rate is significantly reduced with decreasing
LS. This is due to the drastic change in the two-dimensional
potential profile. Similarly the MQT escape rate is decreas-
ing with increasing CS. This behavior can be explained as
follows. In the case of small CS, the kinetic energy to the y
�or �S� direction becomes small. Therefore, due to the strong
anisotropy of the mass, MQT along the external escape di-
rection which connects the minimum ��m ,�S

m� and the
saddle point ��t ,�S

t � �see Fig. 2� is inhibited.
Interestingly, the temperature dependence of the MQT es-

cape rate �MQT
2D �T� for the two-dimensional system is quite

FIG. 4. �Color online� Arrhenius plot of the escape rate ��T� for
the YBCO junction coupled to the LC circuit. �a� LS dependence of
��T� for CS=1.6 pF. �b� CS dependence of ��T� for LS=1.7 nH.
We choose 
=0.9, IC=1.4 �A �LJ=0.54 nH� and CJ=0.22 pF for
both graphs. In the above parameter range, the weak retardation
condition ���1� is satisfied. Solid and dotted arrows indicate the
crossover temperature Tco

2D and TLC, respectively.
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different from that of the one-dimensional system. In the
case without a LC circuit, �MQT

1D �T� is almost constant below
the crossover temperature Tco

1D. On the other hand, in the case
of small LS and large CS, �MQT

2D �T� significantly depends on
the temperature in the range of TLC�T�Tco

2D. Therefore,
from the temperature dependence of the MQT escape rate,
we can distinguish qualitatively the anisotropy of the mass
and the dimensionality of the quantum phase dynamics.

VII. COMPARISON WITH EXPERIMENTS

In this section, we first summarize the experimental de-
vice parameters relevant to the TA and MQT phenomena of a
YBCO grain-boundary biepitaxial Josephson junction �Sec.
VII A�. Then, in order to check the validity of the extended
circuit model12,33,34 for the TA and MQT escape process, we
try to compare our result with the experimental data5 of the
switching current distribution at the high-temperature TA and
the low-temperature MQT regimes �Sec. VII B�.

A. Experimental parameters

Experimental parameters used in numerical calculation
are given in Table I. The values given in the table are indeed
typical ones in actual experiments. By the fitting to the
Kramers formula with experimental data of the TA escape
rate well above the crossover temperature, IC was experi-
mentally estimated as IC=1.4 �A which corresponds to
LJ0=0.24 nH.5 The values of LS=1.7 nH and CS=1.6 pF
have been directly determined from the ELQ experiments.12

Remaining unknown junction parameter is CJ. As will be
shown in the next section, this value is estimated as CJ
=0.22 pF. This allows for a qualitative comparison between
numerical and experimental data of the zero-temperature
MQT escape rate. In this case CS /CJ�7.3 and LS /LJ0�7.2
�LS /LJ�3.2 for 
=0.9�. Therefore, in the actual junction, the
nonadiabatic limit is approximately realized.

B. Numerical results

In this section, we numerically calculate the switching
current distribution P�
� which is related to the escape rate �
as48,49

P�
� =
1

v
��
�exp�−

1

v
�

0




��
��d
�� , �45�

where v	�d	 /dt� is the sweep rate of the external bias cur-
rent. In the actual experiment,5 the temperature dependence

of the full width at half maximum �HMFW� � of P�
� is
measured as shown in Fig. 5.

First we investigate the TA regime. In Fig. 5 we show the
temperature dependence of � in the TA escape regime �red
solid and black dotted lines�. In calculation we have substi-
tuted Eqs. �22� and �24� into Eq. �45�. Both the one- and
two-dimensional model give good agreement with the ex-
perimental data �black circles� well above the crossover tem-
perature �Tco

2D�0.09 K�. Therefore, in the TA regime, the
system can be treated as a one-dimensional model without
the LC circuit.

In the MQT regime, the measured saturated value of � at
T=0.03 K is found to be 11.9 nA.5 From the numerical es-
timation of �, we found that CJ=0.22 pF gives good agree-
ment with the experimental value of � as shown in Fig. 5.
The obtained value of CJ is consistent with the estimated
value CJ�0.16 pF�0.1CS based on the geometry of the
junction.33,50 Therefore, we can conclude that the extended
circuit model quantitatively explain the MQT experiment5 in
the YBCO biepitaxial junction near zero temperature.

In order to test the validity of the extended circuit model
more systematically, experimental measurements of HMFW
� by changing LS and CS are needed.51 In Fig. 6 we show LS
and CS dependence of �. If we use the substrates with low
dielectric constant �, e.g., MgO���9.6� and LaAlO3
���23�, the reduction in � with respect to the one-
dimensional model �blue dotted line in Fig. 6� becomes
small.

VIII. CONCLUSIONS

In the present work, the TA and the MQT escape process
of the YBCO Josephson junction coupled to the LC circuit

TABLE I. Experimental junction parameters used for the esti-
mation of the TA and MQT escape rate.

Parameters Estimated value

IC: Josephson critical current 1.4 �A

LJ0: Josephson inductance 0.24 nH

LJ�
=0.9�: Josephson inductance 0.54 nH

CJ: Capacitance of the junction 0.22 pF

LS: Inductance of the LC circuit 1.7 nH

CS: Capacitance of the LC circuit 1.6 pF

FIG. 5. �Color online� The temperature dependence of the full
width at half maximum � of the switching current distribution P�
�.
Both the one- �dotted black line� and two-dimensional models �red
solid line� give almost same result above the crossover temperature.
The calculated � from the zero-temperature MQT escape rate for
the one-dimensional model and the finite-temperature MQT escape
rate for two-dimensional model �Eq. �44�� are shown by dashed-
dotted �blue� line and �red� squares, respectively. Experimental data
of � �black circles� for a YBCO biepitaxial Josephson junction
�Ref. 5� is also plotted. We choose IC=1.4 �A �LJ0=0.24 nH�,
CJ=0.22 pF, LS=1.7 nH, CS=1.6 pF, and vIC=1.0 mA /s. Ar-
rows indicate the several characteristic temperatures, i.e., TLC, Tco

1D,
and Tco

2D for 
=0.9.
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has been analyzed by taking into account the anisotropy of
the mass and the two-dimensional nature of the phase dy-
namics. Based on the Feynman-Vernon approach, the effec-
tive one-dimensional action is derived by integrating out the
degree of freedom of the LC circuit. We found that the cou-
pling to the LC circuit gives negligible reduction for TA
escape rate. On the other hand, we also found that the MQT
escape rate is considerably reduced due to the coupling be-
tween the junction and the LC circuit. More importantly, the
temperature dependence of the MQT escape rate for the
YBCO junction coupled with the LC circuit is quite different
from that without the LC circuit. These theoretical results are
in an excellent agreement with experimental data of the
YBCO biepitaxial Josephson junction.5 Therefore we can
conclude that the anisotropy of the mass and the two-
dimensional nature of the potential profile due to the cou-
pling to the LC circuit are quite important and essential to
understand macroscopic quantum phenomena and qubit op-
eration in such systems.

There, however, remain a question, which cannot be
treated by the present approach. As seen from Fig. 5, the
extended circuit model cannot explain a hump structure of �
near 0.1 K.5,12 We note that such a characteristic behavior
has been observed in a dc superconducting quantum interfer-
ence device composed only by low-Tc superconductors.52

While the deviation between our theory and the experimental

data is left for a future problem, it might be attributed to the
fact that our model neglects thermal/dynamical population
from the quasiground state to the excited states in the meta-
stable well. We note that in the nonadiabatic cases ��p
��LC� corresponding to the MQT experiment for the YBCO
biepitaxial junction5,12 more quantum levels due to excitation
of the LC circuit are relevant to the decay process than in a
simple one-dimensional system. In order to investigate the
thermal/dynamical population effect, we have to solve a
master equation to obtain population probabilities of each
level by the Larkin and Ovchinnikov theory.53 This consid-
eration may explain the anomaly of the escape rate ��T� near
the crossover temperature.

Finally we would like to comment advantages of the
junction-LC coupling to the qubit and quantum optics appli-
cations. The system that we considered in this paper can be
regarded as an artificial atom �the Josephson junction�
coupled to the quantized electromagnetic field �the LC cir-
cuit�. Therefore the appearance of several interesting phe-
nomena relating to quantum optics,54 e.g., the vacuum Rabi
oscillation,55 generation of a nonclassical state of the LC
system,56 and laser oscillation57 is expected also in the
YBCO biepitaxial junctions. Additionally the LC circuit will
act as a quantum information bus.58,59 Therefore the en-
tanglement or the coupling between separated high-Tc qubits
and eventually a high-Tc version of the circuit-QED
system60–62 will be realized in such biepitaxial junctions.
These studies will open up the possibility of future applica-
tions for high-Tc superconductor materials.
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APPENDIX A: FINITE TEMPERATURE CORRECTION
OF THE MQT ESCAPE RATE

If the temperature T is much smaller than the crossover
temperature Tco

2D, the finite-temperature MQT escape rate �in
the weak retardation limit� is given by the product of
�MQT

2D �T=0� and a finite-temperature correction as63

FIG. 6. �Color online� �a� Ls and �b� Cs dependence of the full
width at half maximum � of the switching current distribution P�
�
at T=0 K for the case with �red solid line� and without �blue dotted
line� the LC circuit. We choose the parameters as IC=1.4 �A
�LJ0=0.24 nH�, CJ=0.22 pF, and vIC=1.0 mA /s.
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�MQT
2D �T� = �MQT

2D �T = 0�exp�A�T�� , �A1�

where A�T� is the finite-temperature correction to the bounce
action and is given in term of the spectral density J��� as

A�T� =
�xB�B�2

2��
�

0

�

d�J����coth��
�

2
� − 1� . �A2�

In this equation xB�B	
−�
� d�xB���, where xB��� is the zero-

temperature bounce. For the spectral density Eq. �14�, the
enhancement function takes the form

A�T� =
36m�LC

3

��p
2 �1 − 
2��coth��
�LC

2
� − 1�

�
72m�LC

3

��p
2 �1 − 
2�e−�
�LC, �A3�

for T���LC /2�kB	TLC. Thus the thermal enhancement
shows exponentially weak temperature dependence as long
as T�TLC. On the other hand, for a damped system with
J�����s, we get algebraic large enhancement
A�T��T1+s.63,64 Thus the coupling to the LC circuit gives the
weak finite-temperature correction to the zero-temperature
MQT escape rate �MQT

2D �T=0� for T�TLC. Note that, in
the actual YBCO junction, TLC�Tco

2D. In Sec. VI C, we
show the finite-temperature MQT escape rate �MQT

2D �T� for
0�T�Tco

2D.

APPENDIX B: THE ESCAPE RATE IN THE CROSSOVER
REGIME

In this Appendix, we show an expression for the escape
rate near Tco

2D. The quantum enhancement factor cqm
2D in the

TA escape rate �TA
2D�T� increases with decreasing the tem-

perature and diverges as T→Tco
2D. This unphysical diver-

gence is due to the appearance of a bounce trajectory for
temperature below Tco

2D and hence the breakdown of the
Gaussian approximation.3 A crossover region is characterized
by the condition �T−Tco

2D��Tco
2D /� in which the dimension-

less parameter � is given by39

� = ��p
2 + �R

2�1 +
�
̂��R�

��R
��
M


2B4
. �B1�

Here the coefficient B4 measures the strength of the anhar-
monicity of the potential U1D and is given by

B4 = �p0
2 � 1


1 − 
2
−

1

2

�p0
2

�2
2 − �p

2 + �2
̂��2�� . �B2�

In the crossover region, functional integral cannot be done
by steepest descents but requires a more careful treatment,
leading to a escape rate of the form65

�co
2D�T� =

a

2

 2�

�����
erfc�
 �

2����
�
co − 
��

� exp�− 
V0
1D +

��
 − 
co�2

2����
� �B3�

with erfc�x�=
−�
x dy exp�−y2 /2� /
2�. In this equation, 
co

=1 /kBTco
2D,

a 	
�1

2 − �p
2 + �1
̂��1�

�p
2 + �R

2�1 +
�
̂��R�

��R
� cqm �B4�

is the dimensionless prefactor, and ����=�
co
2 /2��
=
co�2 is

the energy derivative of the bounce period. This expression
applies for the temperature T slightly above and below Tco

2D

and smoothly interpolates between the high-temperature es-
cape rate �TA

2D�T� and the low-temperature escape rate
�MQT

2D �T� as demonstrated in Fig. 7.
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